Nongenomic modulation of the large conductance voltage‐ and Ca2+‐activated K+ channels by estrogen: A novel regulatory mechanism in human detrusor smooth muscle

نویسندگان

  • Kiril L. Hristov
  • Shankar P. Parajuli
  • Aaron Provence
  • Eric S. Rovner
  • Georgi V. Petkov
چکیده

Estrogens have an important role in regulating detrusor smooth muscle (DSM) function. However, the underlying molecular and cellular mechanisms by which estrogens control human DSM excitability and contractility are not well known. Here, we used human DSM specimens from open bladder surgeries on 27 patients to elucidate the mechanism by which 17β-estradiol regulates large conductance voltage- and Ca2+-activated K+ (BK) channels, the most prominent K+ channels in human DSM We employed single BK channel recordings on inside-out excised membrane patches, perforated whole-cell patch-clamp on freshly isolated DSM cells, and isometric tension recordings on DSM-isolated strips to investigate the mechanism by which 17β-estradiol activates BK channels. 17β-Estradiol (100 nmol/L) rapidly increased depolarization-induced whole-cell K+ currents in DSM cells. The 17β-estradiol stimulatory effects on whole-cell BK currents were completely abolished by the selective BK channel inhibitor paxilline (1 μmol/L), clearly indicating that 17β-estradiol specifically activates BK channels. 17β-Estradiol also increased the frequency of ryanodine receptor-mediated transient BK currents. Single BK channel recordings showed that 17β-estradiol (100 nmol/L) significantly increased the BK channel open probability of inside-out excised membrane patches, revealing that 17β-estradiol activates BK channels directly. 17β-Estradiol reduced spontaneous phasic contractions of human DSM-isolated strips in a concentration-dependent manner (100 nmol/L-1 μmol/L), and this effect was blocked by paxilline (1 μmol/L). 17β-Estradiol (100 nmol/L) also reduced nerve-evoked contractions of human DSM-isolated strips. Collectively, our results reveal that 17β-estradiol plays a critical role in regulating human DSM function through a direct nongenomic activation of BK channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Guinea Pig Detrusor Smooth Muscle Excitability by 17β-Estradiol: The Role of the Large Conductance Voltage- and Ca2+-Activated K+ Channels

Estrogen replacement therapies have been suggested to be beneficial in alleviating symptoms of overactive bladder. However, the precise regulatory mechanisms of estrogen in urinary bladder smooth muscle (UBSM) at the cellular level remain unknown. Large conductance voltage- and Ca2+-activated K+ (BK) channels, which are key regulators of UBSM function, are suggested to be non-genomic targets of...

متن کامل

Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology

Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol 307: R571– R584, 2014. First published July 2, 2014; doi:10.1152/ajpregu.00142.2014.—The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the uri...

متن کامل

Re: Central Role of the BK Channel in Urinary Bladder Smooth Muscle Physiology and Pathophysiology.

The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, which comprises the bladder wall. The large-conductance voltage- and Ca(2+)-activated K(+) (BK, BKCa, MaxiK, Slo1, or KCa1.1) channel is highly expressed in U...

متن کامل

Activation of the BK (SLO1) potassium channel by mallotoxin.

Pharmacologic approaches to activate K+ channels represent an emerging strategy to regulate membrane excitability. Here we report the identification and characterization of a lipid soluble toxin, mallotoxin (rottlerin), which potently activates the large conductance voltage and Ca2+-activated K+ channel (BK) expressed in a heterologous expression system and human vascular smooth muscle cells, s...

متن کامل

Effects of bladder outlet obstruction on properties of Ca2+-activated K+ channels in rat bladder.

In this study, we investigated the effects of bladder outlet obstruction (BOO) on the expression and function of large conductance (BK) and small conductance (SK) Ca(2+)-activated K(+) channels in detrusor smooth muscle. The bladder from adult female Sprague-Dawley rats with 6-wk BOO were used. The mRNA expression of the BK channel alpha-subunit, beta1-, beta2-, and beta4-subunits and SK1, SK2,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017